There are five major types of lithium-ion battery chemistry

November 6, 2017

Experct  fro, Linkedin 

Gerard Reid  Co-Founder Alexa Capital: Empowering Change in the Worlds of Energy and Mobility

 

There are five major types of lithium-ion battery chemistry

Lithium is quite unique as a material in that it is very light with the lowest reduction potential of any chemical element which allows batteries based on lithium to have unbeatable performance. The other advantage is that there is lots of lithium out there, The most popular type of lithium batttery is the lithium-ion battery which because of its unmatchable combination of higher energy and power density has become the rechargeable battery of choice for power tools, mobile phones, laptops and increasingly electrical vehicles (EVs). That all said, there are many different types of lithium-ion battery. And I don’t mean just different manufacturers such as Panasonic, LG Chem, CATL and Samsung. There are five major types of lithium-ion battery chemistry: LFP (lithium iron phosphate), NMC (nickel manganese cobalt), NCA (nickel cobalt aluminum), LMO (lithium manganese oxide) and LCO (lithium cobalt oxide), all of which have differing strengths and weaknesses, and all of which are used in different applications.

NMC, for instance, is generally regarded as the chemistry with the most potential for use in the EV given its high performance, safety and low cost. And in the short term there is significant potential to reduce the cost and improve the performance of NMC batteries. Currently, the standard NMC lithium-ion battery is called a 333 meaning it used 3 parts nickel, 3 manganese and 3 cobalt. Going forward, we will see 811 NMC batteries which will use more nickel, which increases performance, and less cobalt which decreases cost. However, none of these lithium-ion chemistries are going to provide the energy and power density required to power an airplane, so the search is on for better materials.

One of the most interesting possibilities is to replace the commonly used graphite anode in the lithium-ion battery with cheaper and theoretically 10x more energy dense silicon. Note, I said theoretical as the issue with silicon is that degrades quickly which means its lifespan is not long. The good news is that are many firms such as Nexeon and Wacker Chemie are working on resolving this issue, and in fact it is widely believed that Tesla and Panasonic are already sprinkling silicon on the anode side of their new Model 3 battery. Other technical innovations could involve the replacement of one of the battery’s key components in the battery, the electrolyte which is currently a liquid, with a solid electrolyte which would be safer while also improving energy density. However, these changes will all take time.

Moving from the test laboratory to production takes many years. Materials need to be developed, then tested, again and again to ensure that they are safe and have the longevity and other characteristics that customers require. In addition, production processes need to be put in place to ensure that those batteries can be produced cost effectively and at high qualities. Toyota, for instance, has been working for many years on so called solid-state batteries and they are not expecting to bring this technology to the market till 2022!

The good news though is that lithium-ion batteries costs are likely to fall another 50% by 2020 to $100/kWh while at the same time energy density should increase by 20% which will help bring the range of the average electric vehicle (EV) towards 500km. At the same time, this should be enough to ensure cost parity with the internal combustion engine (ICE) car which will in turn give the market for EVs a huge boast. And with growing competition particularly between America, Europe, China and Japan driving innovation at breathtaking speeds, it may not be that long before many of the breakthroughs mentioned above come to market. This competition is also likely to push radical new technologies such as lithium-sulphur and lithium-air to the market much quicker than what most people currently expect. Such technologies theoretically can deliver energy densities greater than gasoline can which would have huge implications for not only road travel but also air and ship transport. Now that would make things very interesting!

 

Tac battery can support all of these type battery with your require to meet your price or application